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between the trigonal prisms formed by the hydroxyl 
and oxygen ions of adjacent layers, and escape 
attention in the electron-density diagram because of 
its small scattering power. Were this the case, the 
aluminium layer would be a normal hydrargillite one, 
and, because of the systematic 'holes', the b axis would 
need to be 3×2.91 ~ 8.73 A. Strongly exposed 
Weissenberg films taken about the a axis give, how- 
ever, no evidence of a larger unit cell. The same 
argument proves that  the lithium ions cannot occur 
systematically in sites corresponding to the holes of 
the hydrargillite layer, but are randomly distributed 
with the aluminiums over all the sites in a layer of the 
brucite type. 

The manganese-oxygen layer is also composed of 
octahedra lint:ed together in a closely bonded sheet. 
This is a most unusual grouping for a tetravalent oxide, 
and the octahedra, like those comprising the aluminium 
layer, are grossly distorted owing to the six short 
edges of each which are shared with its neighbours. 
The mean lengths of the shared edges, 2.56 J~ for each 
layer, are in good agreement with values found for 
other compou~lds in which an 0 - 0  pair is shared by 
two cations of high valency (Pauling, 1940, p. 400). 

The  hydroxy l  bond 

An examination of the variations in the OH-OH 
distances of hydrargfllite led Bernal & Megaw (1935) 
to define the role of hydrogen in intermolecular forces. 
The characteristic stacking of the AI(0H)6 sheets in 
hydrargillite was due to the location of hydrogen atoms 
between the layers to form hydroxyl bonds. The 
hy.drogen atoms themselves were closely associated 
with oxygen atoms to retain the identity of the (OH) 
groups. 

I t  has been pointed out above that  the stacl~ing of 
the layers in litMophorite resembles that  of hydrar- 
gfllite. The distance between adjacent 0 and (OH) 
ions is 2.76 J~, in good agreement with the length of 
the hydroxyl bond given by Bernal & Megaw as 
2.7-2.8 _~. I t  appears, therefore, that  the hydrogen 
atoms of the (A1, Li) layer are directed towards the 
oxygen ions beneath so as to form hydroxyl bonds, 
which may be readily disrupted to cause the prominent 
basal cleavage. The directions of the hydroxyl bonds 
are given as thick broken lines in Fig. 2. 
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programme of the Division of Industrial Chemistry, 
Commonwealth Scientific and Industrial Research 
Organization, Melbourne, Australia. The writer 
acknowledges with gratitude the gift of the specimen 
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and desires to thank Dr A. L. G. Rees for the provision 
of some laboratory facilities and Dr A. McL. Mathieson 
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The description, given by Taylor, of the optical basis of Wilson's stutistical method for detecting 
centrosymmetry in a crystal suggests that there are certain conditions under which exceptions may 
arise. One of these exceptions--a structure with centrosymmetrical molecules arranged centre- 
symmetrically--gives a more extreme distribution of intensities than does an ordinary centre- 
symmetrical structure. It  is proposed to call this distribution 'hypercentric', and its recognition 
may lead to useful preliminary information at the outset of a structure determination. The theory 
of the hypercentrie distribution is discussed, and some examples of crystals in which it occurs 
are given. 

1. The  hypercentr ic  d is tr ibut ion  
The statistical analysis, introduced by Wilson (1949) 
and developed by Howells, Phillips & Rogers (1950), 

has provided an extremely powerful addition to the 
usual methods for determining space groups. As Wilson 
has pointed out, however, the success of the method 
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depends upon the randomness  of the dis t r ibut ion of 
the atoms wi th in  the uni t  cell; thus  it might  be ex- 
pected tha t  the presence of non-crystal lographic sym- 
me t ry  in the atomic a r rangement  might  lead to mis- 
leading results. A simple i l lustrat ion of this  is provided 
by consideration of the optical basis of Wilson's  
theory  described by Taylor  (1952). 

Taylor  has shown tha t  the Fraunhofer  diffraction 
pa t te rn  of a centrosymmetr ical  set of holes contains a 
greater proportion of extreme in tens i t i es - -h igh  peaks 
and ze ros - - than  tha t  of a non-centrosymmetr ica l  set. 
Suppose, however, tha t  a crystal  contains centro- 
symmetr ica l  molecules in general positions in a 
centrosymmetr ica l  space group. I t  can easily be seen 
tha t  such molecules must  be exact ly  parallel,  and thus 
the  diffraction pa t te rn  of the pair  of molecules will be 
crossed by  equal ly  spaced sinusoidal fringes; in other 
words, an addit ional  set of zeros is superimposed on 
the zeros present in the diffraction pa t te rn  of the single 
molecule. Thus the in tens i ty  dis t r ibut ion would not  
follow the curve for ordinary cent rosymmetr ica l  
structures.  

This deduction is supported by  an  analysis  of the 
da ta  from pyrene (Robertson & White ,  1947), 1 : 1 : 6 : 6- 
t e t raphenyl  hexapentaene,  and f lavanthrone;  the first 
two crystals have four molecules (Fig. l(a) and l(b)) 

I 

(a) (b) (c) 

:Fig. 1. D i a g r a m m a t i c  forms of-£he molecules  of ( a ) p y r e n e ,  
(b) 1 : 1 : 6 : 6 - t e t rapheny l  hexapen taene ,  and  
(c) f l avan th rone  (showing the  two cen t rosymmet r i ca l  parts) .  
No dis t inct ion is m a d e  be tween  the  d i f ferent  a toms.  
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:Fig. 2. I n t e n s i t y  d is t r ibut ion  curves for py rene  (x), 1 : 1 : 6 : 6- 
t e t r a p h e n y l  hexapen t aene  (o)  and  f l avan th rone  ( ,)  (of. 
Fig. 1) compared  wi th  the  curves for acentr ie ,  centr ic  and  
hypercen t r i c  zones. 

in the uni t  cell of space group P21/a, and, a l though 
the lat ter  has only two molecules in the uni t  cell, each 
molecule (Fig. l(c)) can be regarded as composed of 
two centrosymmetr ica l  parts.  The hO1 distr ibut ion 
curves for these three crystals are shown in Fig. 2, 
and it will be seen tha t  the points lie well above the 
curve for a centric distr ibution.  

2. T h e o r y  of the hypercentr ic  dis tr ibut ion 

Consider a crystal  with N atoms in sets of four with 
coordinates +(x+x' ,  y+y ' ,  z+z'), ±(x--x ' ,  y--y' ,  
z--z'), where ±(x',  y', z') are the coordinates of the 
molecular  centres of s y m m e t r y  relat ive to tha t  of the 
uni t  cell. 

The combined contr ibut ion of such a set of a toms 
to the structure factor at any  point  in the Fourier  
t ransform of the pair  of molecules is 

where 
~n = fn cos 2~s .  r × cos 2~s .  r ' ,  (1) 

s -~ ha*+kb*+lc*,  
r = x a ÷ y b + z c ,  
r '=  x ' a + y b ÷ z c .  

The factor cos 2 ~ s . r '  defines the planes of zero 
in tens i ty  which occur in the t ransform of a hyper-  
centric structure,  as ment ioned in § 1. 

Wi th in  a th in  section of the t ransform for which 
cos 2zs .  r '  is constant  this  gives a normal  dis t r ibut ion 
of s tructure factors about  the mean  value of zero and 
with mean  square deviat ion 

¼.4- 
a 2 = 2.' ~2 = 2 cos 2 2~s .  r '  × X ,  

where n=l 

n = l  

The  probabi l i ty ,  wi th in  this section of the t ransform, 
tha t  the structure factor at  any  point  lies between 
F8 and Fs--[-dF ~ is 

P(F~)dFs 
= (4zX)-½ exp (--2'~ sec 2 2~s .  r ' /4X) sec 2zs .  r'dF~. 

The probabi l i ty  of f inding a structure factor between 
F and F + d F  in the whole t ransform is 

P(F)dF 

f 
u = l  

= ~(4~Z')-½ exp ( - - F  2 sec 2 ½~u/4Z) sec ½z~u dFdu 
--1 

t=oo 
= 2~-1(4zZ)-½1 exp {--F2(1 +t2)/4_~}(1 +t2)-½dF dr, 

.t0 

where u = 4s.  r '  and  t ---- tan  ½zu. 
In  terms of in tens i ty  

P(I)dI 
/ 

xl-1 (4x~Y'I)-½ 
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From (1) it is easily deduced that  the mean intensity 
(1) of the transform is 

2 Z x  mean value of cos 2 2~s. r ' .  
Hence 

<z>-= z'. 

If we put I / ( 1 ) =  z ,  

P(z)dz = ~-l(4uz)-½ Jo exp {--¼z(1-Ft~)}(1--Ft2)-½dtdz. 

The proportion of intensities lower than z is 

[,~=z (,t=oo½ 
N(z)----~-l(4.u) -½ ~ ~ z- exp--{¼z(14-t2))(1--Ft2)dtdz. 

t)0 *)0 

Let z ---- 2a~/(1-Ft~), then 

iV(z) ~-~ (--½0¢ 2) (1 -Jr-$2)-ld$ dz .  
®,0 

' f  We may put ~-~-~ exp (--½~x2)d~x----q)(K), which is 

a common statistical integral and well tabulated 
(e.g. Weatherburn, 1947, p. 46). Then 

= 4 i {½ )} - z ( l~- t  2 ½( l+t2)- ldt .  
J 0 

This function is shown graphically in Fig. 2 and 
it will be seen that  the points for the three crystals 
mentioned in § 1 lie reasonably close to the curve. 

I t  should be noted that  the above treatment applies 
strictly to the intensity distribution of the transform 
of a single unit cell and applies to the intensities of 
reciprocal-lattice points only when these are a fair 
sample of the whole transform: In the special case of a 
glide plane parallel to the plane of projection, for 
example, the distribution of the transform intensity 
will be that  of the normal hypercentric case. The 
reciprocal lattice, however, samples the transform in 
a very special way, namely, at points on the planes 
defined by cos 27~s. r '  = + 1 or 0 and the distribution 
for these points does not follow the hypercentric 
theory. The systematic absences should be ignored 
and the remaining points give the normal centric 
distribution (Howells, Phillips & Rogers, 1950). 

di-p-anisyl nitric oxide (Hanson, Taylor & Lipson, 
1952) give the distribution curve shown in Fig. 3, 
and this suggests that  the projection is centrosymme- 

N(z) (~) 40 J / .  

/ J  

2O 

~,~J"~ 

40 60 80 1 O0 
z (~) 

Fig. 3. Distribution curve for di-p-anisyl nitric oxide. 

J 
Fig. 4. Diagrammatic form of the molecule of di-p-anisyl 

nitric oxide. 

trical. Systematic absences show that  the space group 
is either Abam or Aba2, and since there are only four 
molecules (Fig. 4) in the unit cell, the former is im- 
possible, since it would require the molecule to have 
symmetry 2/m. The latter space group, however, has 
not a centrosymmetrical projection on (100). The 
simulation of the higher symmetry is largely due to 
the fact that  the molecule may be considered to 
consist approximately of two centrosymmetrical parts. 

If considerations of this sort are borne in mind, it is 
possible that  the use of intensity statistics will have 
as great an importance in the study of the atomic 
positions in a structure as they have already been 
shown to have in distinguishing between space groups. 

We wish to thanl~ Dr A. J. C. Wilson for his help- 
ful advice and criticism, and Dr H. P. Stadler for 
allowing us to make use of his data for flavanthrone. 

3. Causes of depar ture  f r o m  ord inary  d i s t r ibut ion  

The above results suggest that  the acentric, centric 
and hypercentric distributions are special cases of a 
family of curves which correspond to different 'degrees' 
of symmetry. Thus it may still be possible to extract 
some information from a zone of intensities even if it 
gives no clear indication of the space group; the 
approach to one or other of the different curves may 
be due to molecular, rather than crystallographic, 
symmetry. For example, the Okl intensities for 
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